32 research outputs found

    Genomic biomarker discovery in disease progression and therapy response in bladder cancer utilizing machine learning

    Get PDF
    Cancer in all its forms of expression is a major cause of death. To identify the genomic reason behind cancer, discovery of biomarkers is needed. In this paper, genomic data of bladder cancer are examined for the purpose of biomarker discovery. Genomic biomarkers are indicators stemming from the study of the genome, either at a very low level based on the genome sequence itself, or more abstractly such as measuring the level of gene expression for different disease groups. The latter method is pivotal for this work, since the available datasets consist of RNA sequencing data, transformed to gene expression levels, as well as data on a multitude of clinical indicators. Based on this, various methods are utilized such as statistical modeling via logistic regression and regularization techniques (elastic-net), clustering, survival analysis through Kaplan–Meier curves, and heatmaps for the experiments leading to biomarker discovery. The experiments have led to the discovery of two gene signatures capable of predicting therapy response and disease progression with considerable accuracy for bladder cancer patients which correlates well with clinical indicators such as Therapy Response and T-Stage at surgery with Disease Progression in a time-to-event manner

    MCNN-LSTM: Combining CNN and LSTM to classify multi-class text in imbalanced news data

    Get PDF
    Searching, retrieving, and arranging text in ever-larger document collections necessitate more efficient information processing algorithms. Document categorization is a crucial component of various information processing systems for supervised learning. As the quantity of documents grows, the performance of classic supervised classifiers has deteriorated because of the number of document categories. Assigning documents to a predetermined set of classes is called text classification. It is utilized extensively in a wide range of data-intensive applications. However, the fact that real-world implementations of these models are plagued with shortcomings begs for more investigation. Imbalanced datasets hinder the most prevalent high-performance algorithms. In this paper, we propose an approach name multi-class Convolutional Neural Network (MCNN)-Long Short-Time Memory (LSTM), which combines two deep learning techniques, Convolutional Neural Network (CNN) and Long Short-Time Memory, for text classification in news data. CNN's are used as feature extractors for the LSTMs on text input data and have the spatial structure of words in a sentence, paragraph, or document. The dataset is also imbalanced, and we use the Tomek-Link algorithm to balance the dataset and then apply our model, which shows better performance in terms of F1-score (98%) and Accuracy (99.71%) than the existing works. The combination of deep learning techniques used in our approach is ideal for the classification of imbalanced datasets with underrepresented categories. Hence, our method outperformed other machine learning algorithms in text classification by a large margin. We also compare our results with traditional machine learning algorithms in terms of imbalanced and balanced datasets

    SNF-NN: Computational method to predict drug-disease interactions using similarity network fusion and neural networks

    Get PDF
    Background: Drug repositioning is an emerging approach in pharmaceutical research for identifying novel therapeutic potentials for approved drugs and discover therapies for untreated diseases. Due to its time and cost efficiency, drug repositioning plays an instrumental role in optimizing the drug development process compared to the traditional de novo drug discovery process. Advances in the genomics, together with the enormous growth of large-scale publicly available data and the availability of high-performance computing capabilities, have further motivated the development of computational drug repositioning approaches. More recently, the rise of machine learning techniques, together with the availability of powerful computers, has made the area of computational drug repositioning an area of intense activities. Results: In this study, a novel framework SNF-NN based on deep learning is presented, where novel drug-disease interactions are predicted using drug-related similarity information, disease-related similarity information, and known drug-disease interactions. Heterogeneous similarity information related to drugs and disease is fed to the proposed framework in order to predict novel drug-disease interactions. SNF-NN uses similarity selection, similarity network fusion, and a highly tuned novel neural network model to predict new drug-disease interactions. The robustness of SNF-NN is evaluated by comparing its performance with nine baseline machine learning methods. The proposed framework outperforms all baseline methods (AUC- ROC = 0.867, and AUC- PR=0.876) using stratified 10-fold cross-validation. To further demonstrate the reliability and robustness of SNF-NN, two datasets are used to fairly validate the proposed framework’s performance against seven recent state-of-the-art methods for drug-disease interaction prediction. SNF-NN achieves remarkable performance in stratified 10-fold cross-validation with AUC- ROC ranging from 0.879 to 0.931 and AUC- PR from 0.856 to 0.903. Moreover, the efficiency of SNF-NN is verified by validating predicted unknown drug-disease interactions against clinical trials and published studies. Conclusion: In conclusion, computational drug repositioning research can significantly benefit from integrating similarity measures in heterogeneous networks and deep learning models for predicting novel drug-disease interactions. The data and implementation of SNF-NN are available at http://pages.cpsc.ucalgary.ca/ tnjarada/snf-nn.php

    An integral linear interpolation approach to the design of incremental line algorithms

    Get PDF
    AbstractA unified treatment of incremental line-drawing algorithms understood from the viewpoint of rounded interpolation, covering Bresenham's algorithm, run-length algorithms, and multistep versions of both

    Transfer learning through weighted loss function and group normalization for vessel segmentation from retinal images

    Get PDF
    The vascular structure of blood vessels is important in diagnosing retinal conditions such as glaucoma and diabetic retinopathy. Accurate segmentation of these vessels can help in detecting retinal objects such as the optic disc and optic cup and hence determine if there are damages to these areas. Moreover, the structure of the vessels can help in diagnosing glaucoma. The rapid development of digital imaging and computer-vision techniques has increased the potential for developing approaches for segmenting retinal vessels. In this paper, we propose an approach for segmenting retinal vessels that uses deep learning along with transfer learning. We adapted the U-Net structure to use a customized InceptionV3 as the encoder and used multiple skip connections to form the decoder. Moreover, we used a weighted loss function to handle the issue of class imbalance in retinal images. Furthermore, we contributed a new dataset to this field. We tested our approach on six publicly available datasets and a newly created dataset. We achieved an average accuracy of 95.60% and a Dice coefficient of 80.98%. The results obtained from comprehensive experiments demonstrate the robustness of our approach to the segmentation of blood vessels in retinal images obtained from different sources. Our approach results in greater segmentation accuracy than other approaches

    – Scattering model – Natural phenomena –

    No full text
    Efficiently simulating scattering of light by leave

    Efficiently simulating scattering of light by leaves

    No full text

    APPLYING THE EXPONENTIAL CHEBYSHEV INEQUALITY TO THE NONDETERMINISTIC COMPUTATION OF FORM FACTORS

    No full text
    The computation of the fraction of radiation power that leaves a surface and arrives at another, which is specified by the form factor linking both surfaces, is central to radiative transfer simulations. Although there are several approaches that can be used to compute form factors, the application of nondeterministic methods is becoming increasingly important due to the simplicity of their procedures and their wide range of applications. These methods compute form factors implicitly through the application of standard Monte Carlo techniques and ray casting algorithms. Their accuracy and computational costs are, however, highly dependent on the ray density used in the computations. In this paper a mathematical bound, based on probability theory, is proposed to determine the number of rays needed to obtain asymptotically convergent estimates for form factors in a computationally efficient stochastic process. Specifically, the exponential Chebyshev inequality is introduced to the radiative transfer field in order to determine the ray density required to compute form factors with a high reliability/cost ratio. Numerical experiments are provided which illustrate the validity and usefulness of the proposed bound.We are currently acquiring citations for the work deposited into this collection. We recognize the distribution rights of this item may have been assigned to another entity, other than the author(s) of the work.If you can provide the citation for this work or you think you own the distribution rights to this work please contact the Institutional Repository Administrator at [email protected]
    corecore